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ABSTRACT
In this paper a novel optimal approach of control strategy is introduced by applying 
fractional calculus in the structure of sliding mode control for a range of dynamics 
system liable to ambiguity. So, a fractional sliding mode control was designed for 
dynamics of the two-link rigid-flexible manipulator. Furthermore, a multi-objective 
genetic algorithm was proposed in order to find the ideal variable structure of the 
sliding mode control. Optimal variables were achieved by the optimization of the con-
ventional sliding mode control. Then the performance of both the conventional and 
the fractional sliding mode control were compared with respect to optimal variables. 
Results indicated that by applying the optimized fractional sliding mode control, the 
system’s error was significantly reduced consequently tracking the desired value was 
done with a higher degree of accuracy and a smoother control action was achieved.

Keywords: fractional calculations, sliding mode control, two-link flexible manipula-
tor, Pareto optimal, genetic algorithm.

INTRODUCTION

In recent years, a lot of researchers in engi-
neering sciences have become interested in the 
application of non-integer order systems and as 
a result, concentrated on the element of frac-
tional order systems. In the control theory, many 
studies have been conducted successfully on the 
design of the integer order (Zinober 1989, Das 
2007, Aghababa 2015, Zhong et al. 2016). In 
recent years, through a better theoretical under-
standing of fractional calculations and the sub-
sequent developments which are widely used in 
various fields of engineering sciences and by ap-
plying fractional order, operators in the control-
ler structure, realised a new vision in the field 
of automatic control systems. Oldham and Spin-
ner in (Zinober 1989) and in (Podlubny 1999) 

conducted research on the key components of 
fractional calculus, and fractional differential 
equations and Das (2007) focused on the en-
gineering perspective of this issue. Aghababa 
(2016) introduced a fractional control method 
for chaos control of integer-order non-autono-
mous chaotic systems based on the sliding mode 
control. Zhong et al. (2015) developed fraction-
al order sliding observer mode structures for the 
fractional order nonlinear system models. They 
investigated the asymptotic stability of error by 
Lyapunov stability analysis approach. Bisheban 
and Mahmoodabadi (2013) proposed the de-
coupled SMC technique to stabilize an inverted 
pendulum, which was optimized by Multi-ob-
jective particle swarm algorithm to reduce the 
normalized angle error of the pole and distance 
error of the cart, concurrently.
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Studies on fractional calculations are very 
widespread in the field of automatic control, 
and some of them are: Fractional systems in 
the context of feedback control (Zinober 1989), 
fractional PID controller (Hamamci 2007), and 
issues related to parameters selection using the 
Ziegler-Nichols method rules (Valério & da 
Costa 2006). Das and Pan (2014) designed a 
fractional-order PID controller for an automatic 
voltage regulator system to measure objectives 
such as the set-point tracking, load disturbance, 
and noise rejection controller effort, in the Pa-
reto optimal solution. Pan et al. (2015) proposed 
an active control policy design for a fractional 
order financial system, which considers multiple 
conflicting objectives as a nonlinear state feed-
back mechanism. Pan and Das (2015) designed a 
fractional-order PID controller for load-frequen-
cy control of two interconnected power systems. 
They developed multi-objective optimization 
frameworks based on the NSGAII and chaotic 
optimization to tune the gains and the fraction-
al differ-integral orders of the PID controllers. 
Their results showed that the fractional PID con-
troller system which optimized evolutionary al-
gorithms could rapidly follow the desired output 
with higher precision and robustness. 

In this paper, a fractional controller is proposed 
to eliminate chattering and tracks the same peri-
odic two-link manipulator even with levels of high 
uncertainty. To deal with structural (lack of preci-
sion in the model) and non-structural uncertainties 
(lack of precision in order of system) in the control 
model, the fractional sliding mode controller was 
used. Fundamentally, SMC involves two parts: the 
plan of the surface in the state space so that the de-
creased order sliding movement fulfills the deter-
mination force of the architect; and the amalgama-
tion of a control law and spasmodic sliding surface, 
such that the directions of the closed loop move-

ment are coordinated towards the surface. For this 
purpose, a parameter selection method proposed 
using a multi-objective GA in order of sliding mode 
control of the variable structure system. 

FRACTIONAL CALCULATIONS

Fractional analytics is a branch of math-
ematical science that investigates the possibil-
ity of getting real or complex number powers 
of the differentiation operator and generalizes 
the derivative or integral of a function to non-
integer order, permitting calculations such as 
deriving a function to 1/2 order (Panigrahi et al. 
2013). Calculus gives a meaning to df/dt, d2f/dt2 
and ∫ f(u) du that they are respectively first and 
second order derivatives and first order integral. 
But what if the differentiation order is not an 
integer, according to these purposes, fractional 
calculations can be used. Fractional calculus 
was introduced in September 30th, 1659 in a let-
ter L’Hopital wrote to Leibniz. After Leibniz 
(1695), other scientists including Euler (1730), 
Lagrange (1772), Laplace (1812), Abel (1822), 
Liouville (1832), Riemann (1876) and Grun-
wald (1838–1920) and Letnikoff (1837–1888) 
worked in the field. Fractional derivative with 
a basic definition as Dt

α, which is a decision of 
differential and integral operators is character-
ized as follows:

(1)

Where a and t are the limits of the operation and 
α ∈ R.

The Grunwald-Letnikov (GL) and the Riemann-
Liouville (RL) are two definitions used for the gen-
eral fractional differ-integral. The GL is given as:

(2)

q is the order of the derivatives and α is a constant related to the initial conditions. The RL definition is 
given as:

(3)

Fractional order differential equations are as steady as their integer orders partners, since systems 
with memory are usually more steady than their memory-less options (Baleanu & Güvenç 2010).

By modifying the sliding mode control using a sliding surface containing fractional derivatives in 
order to design the sliding mode controller for two-link rigid-flexible manipulator.
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DYNAMIC EQUATIONS OF MOTION 
FOR THE TWO-LINK RIGID-FLEXIBLE 
MANIPULATOR 

The system considered in this study consists 
of two members which, as demonstrated in Fig. 
1, are connected to each other by a revolute joint 
and are only capable of planar motions. The first 
member is considered rigid, while the second 
is modeled as a flexible narrow beam. Longitu-
dinal deformations are neglected in the second 
member. It is assumed that the second member 
can be bent freely in the horizontal plane, but 
can resist vertical bending as well as torsion. 
Hence, the Euler-Bernoulli theory may be used 
to describe the bending motions of the flexible 
member. In addition, the Lagrange equation can 

be used to derive the dynamic model of the two-
link manipulator.

According to Fig. 1, X0OY0 is the fixed coor-
dinate system, and X1OY1 and X2OY2 are the mov-
ing coordinate systems attached to the joints cor-
responding to the rigid and flexible links, respec-
tively. In addition, θ1 and θ2 are the rotation angles 
of each of the links with respect to the X axis of 
their previous coordinate system, and w(x, t) is 
the elastic transverse displacement of the flexible 
member. Since the bending motions of a beam do 
not impose significant axial vibrations, axial de-
formations were not included in our study. Two 
perpendicular pairs of unit vectors (i1, j1) and (i2, 
j2) attached to the moving coordinates of the links 
are shown in Fig. 1. The position vectors of the 
points on the Two-Link are R1 and R2, dynamic 
equations of motion are concluded. Selecting the 
n first modes as the assumed-modes for the dis-
cretization procedure, the following centralized 
model is acquired for the system:

(4)

Where X = [θ1, θ2, w1, w2,..., wn]
T is the vector of 

generalized coordinates, xθ show the rigid body 
the M and K are the inertia and stiffness matri-
ces, respectively, the vector F contains the non-
linear expressions associated with the Coriolis 
and centripetal forces, and u represents the in-
puts to the system (Pashaki et al. 2017; Pashaki 
& Pouya 2016). 

Dynamic equation of motion for manipulator 
can be written as:

 
Fig. 1. The schematic diagram of a two-link 

rigid-flexible manipulator

Consider the reduced model which contains only the rigid part of the whole dynamic model of 
flexible robot arm:

SLIDING MODE CONTROL FOR TWO-
LINK FLEXIBLE ROBOT ARM 

SMC was mentioned for the first time in 
1950 by Emelyanov in the former Soviet Union 
(Emel’yanov 2007). It is a nonlinear control 
strategy that modifies the dynamics of a non-
linear system by utilization of a discontinuous 
control flag that powers the system to “slide” 

along a cross-segment of the system’s typical 
behaviour. The various control structures are 
outlined so that directions dependably move to-
wards a nearby locale with an alternate control 
structure. This part expresses the idea of sliding 
mode control for a Two-Link Flexible robot arm 
based on fractional order control. Initially, the 
sliding surface by using integer order of deriva-
tive (PD) is considered. Then fractional type of 
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sliding surface is employed by using non-integer 
order of derivative (PDα).

Now consider the following second-order 
nonlinear dynamic model which is described by 
(for convenience consider Xθ = x) :

(5)

Where, x (t) is a state vector, u (t) ∈ R is the con-
trol input. The initial desired state xd (0) 
must be (0) = x (t0), bk (x), fk (x) and k = 
1, 2, ..., n operation and control of non-
linear dynamic system, respectively. The 
tracking error in the variable x is given as:

 
Fig. 2. Sliding condition

(6)
And the tracking error x̃(t) ∈ R2n can be written as:
x̃ (t) = x (t) - xd (t)
The dynamics f (x, t) is not exactly known, but estimated as f̂ (x, t). The estimation error on f (x, t) 

is assumed to be bounded by a known function F:

(7)

CONVENTIONAL SLIDING SURFACE

A conventional sliding surface can be defined as:

(8)

Where, λk is strongly a positive constant and the amount which determines the differential equation is 
stable. The issue of tracking of xd (t) = x (t) is equal to staying on the sliding surface for all t > 0, 
in reality S = 0 speaks to a straight differential mathematical statement whose unique solution is 0 
= x̃(t), Thus, the issue of the tracking xd can be deduced to keeping the scalar amount of s at zero.

(9)
Where, ƞ is a strongly positive constant, s2 implies that the squared distance to the sliding surface re-

duced during all system trajectories. It diminished in all system directions. It contains directions 
that point towards the surface s (t) and it includes trajectories towards the surface of s (t). As 
shown in Figure 2, the system directions remained on the surface (Perruquetti 2002).

The derivative of (8) with respect to time can be represented by:

(10)

Let x (t) changes and be the tracking error in the variable xd (t): 

(11)

(12)
The derivative of (12) and (11) with respect to time can be represented by:

(13)
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(14)
Then again substituting (11) into (5) yields: 

(15)

(16)

Substituting (1) and (15) into (10) results:

In order to fulfil the sliding condition s = 0, despite uncertainty on the dynamics of, input control 
can be defined as:

(17)

In this equation, the best approximation of an equivalent-control law that would achieve ṡ = 0 Also   
kk is the design is a switching feedback control gain and kk  ≥  ƞ.

During contact with the sliding surface due to the discontinuity in the sign function, chattering phe-
nomenon was observed. In general, chattering must be omitted from the controller for proper execution. 
This can be achieved by replacing the sign function with the sat function and smoothing out the control 
irregularity in a thin limited layer with the thickness of Φ (Fig. 3). The switching surface that developed 
into the sat function will be depicted in next section (Mahmoodabadi et al. 2012).

(18)

Fractional sliding mode control for two link flexible manipulator 

Since the fractional-order sliding surface PDα can be defined as follows:

(19)

Or it can be written as:

(20)

And substituting (14) into (20) can be represented by:

(21)

Taking derivative of (21) with respect to time can be represented by:

(22)

Combination of (16) and (22), then by forcing Ṡk = 0 :

(23)

By selecting uk (t) as equation (23), since the sign function in the meaning of the control law is a hard 
non-linearity, as we mentioned before, Function sat(s/Φ) is substituted with sgn function to eliminate the 
chattering phenomenon in the sliding mode control, we then have:



61

Advances in Science and Technology Research Journal  Vol. 11 (3), 2017

 
Fig. 3. Function sat(s/Φ) to eliminate the chattering 

phenomenon in the sliding mode control

And also an n-dimensional decision vector is 
defined as:
x = {x1, ..., xn}

T

In the response space, S has been considered 
as x ∈ S.
Where: ((f1 (x), f2 (x), ..., fk (x)) are the k objec-

tives functions, {x1, ..., xn} are n optimiza-
tion parameters, and S ∈ R is the solution 
of parameters space.

Pareto optimal definition: x* is a Pareto op-
timal solution, MOG, if and only if there is no x 
(i.e., x ∈ S) that:

(25)

fj (x) ≤ fj (x
*) for at least one objective func-

tion. The Pareto curve can include the trade-off 
point, which manages the balance between all ob-
jective functions. Figure 4 shows an optimal set 
related to a multi objectives optimization.

In view of the fact that the hitting time and 
the chattering issue are the most important fac-
tors that effectively influence the efficiency of 
the suggested controller, thin limited layer Φk 
that have immense effect on chattering phenom-
ena and Kk that will influence rate of synchroni-
zation considered as the variable optimization 
in multi-objective genetic algorithm. And  in 
order to find the most suitable application of the 
fractional derivative.  

In this multi-objective optimization, for con-
ventional and fractional SMC optimization plan, 
two issues were considered:
 • Error reduction in tracking the desired trajec-

tory control system
 • Reduction in control input (control effort).

 
Fig. 4. Scheme of a multi-objective optimization

MULTI-OBJECTIVE OPTIMIZATION USING 
GENETIC ALGORITHM

A large class of engineering problems in-
clude many optimization issues which help sci-
entists to promote their results by using multi 
objective optimization. 

Over the previous decade, various multi-ob-
jective algorithms have been recommended (Deb 
2001; Fonseca & Fleming 1993; Sbalzarini et al. 
2000). An important explanation for this is their 
capacity to discover the Pareto set in one single 
recreation run (Deb et al. 2002). A sensible an-
swer for a multi objective problem is to research 
a Pareto set in which each satisfies the objectives 
at an adequate level without being ruled by any 
other arrangement.

The goal of multi objective GA is to find as 
many of these solutions as possible. If realloca-
tion of resources cannot improve one cost with-
out raising another cost, then the solution is Pa-
reto optimal. A Pareto GA returns a population 
with many members on the Pareto front. The 
population is ordered based on dominance. A few 
unique algorithms have been suggested to be ef-
fectively related to different issues, for example 
(Sbalzarini et al. 2000). 

Vector-Evaluated GA, Multi Objective GA, 
A Non-Dominated Sorting GA and Non-Dom-
inated Sorting GA were used in the proposed 
research.

A multi objective optimization problem can 
be formulated as:

(24)
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Where: f1 (x) and f2 (x) are the Objective functions 
and there are defined as the total amounts 
of tracking error and control input simul-
taneously in total simulation time, which 
can be written as follows :

(26)

Objective functions simultaneously are effective in 
the performance of control system. It is desirable 
to have the fast reaching velocity to the switching 
hyper-plane in the hitting phase and slide to the ori-
gin with small chattering phenomena in the sliding 
phase. And also the Parameters of Multi-Objective 
Genetic Algorithm are defined as follows:

Population = 60      crossover = 0.8
Generations = 110   kk = [0, 10]
Φk = [0, 2]

SIMULATION IMPLEMENTATION 

The optimal conventional and fractional slid-
ing mode controller has been successfully em-
ployed by a planner to control the two-link flex-
ible robot arm system (Pashaki & Pouya 2017). 
Conventional sliding mode control PD Optimiza-
tion was done with respect to optimization vari-
ables Φ and k and Objective functions (26), and 
optimal parameters are chosen through as follow:

Φ = 0.2421 
K1 = 3.3205, K2 = 6.1032
And others parameters are chosen as λ1 = 8, 

λ2 = 8, α = 0.85. Furthermore, the estimated val-
ue of the dynamic parameters of the manipulator 
given in Table 1. The simulation results based on 
PDα sliding mode control and PD Sliding Mode 
Control have been depicted in the Fig. 6 - 17 re-
spectively. A fast tracking response is achieved by 
employing the PDα SMC in comparison with the 
response achieved by employing the PD SMC. 
In addition, it can be seen that by employing the 
PDα SMC a smooth control action is achieved. The 
chattering of u1 (t) and u2 (t) are reduced in Figs. 16 
and 17. From Figs. 12 and 13, it is observed that 
by employing the PDα SMC, tracking performance 
are properly optimized and result in a faster track-
ing response with minimum reaching phase time in 
comparison with the PD controller Figs. 6 and 7. 

Table 1. Manipulator properties

Physical
parameters

Link1 Link2

Length (m) L1 L2

Moment of inertia at the origin of the link (kg ∙ m2) j1 = 1.5 ∙ 10-3 j2 = 1.85 ∙ 10-4

Mass of the link (kg) 1.2 1.9

Mass at driving motor on the second link (kg) 1

Mass density of the second link ρAL = 7860

Young modulus (kg/m2) E1 = 1.98 ∙ 1011 E2 = 1.98 ∙ 1011

Second area moment of inertia (m4) 2.20 ∙ 10-10

Table 2. Result of the controller performances

Controller PD PDα

Reaching time 1 (s) 1.83 0.48

Reaching time 2 (s) 1.99 0.45

The absolute total error1 93.3289 10.0561

The absolute total error2 182.4476 9.5760

 
Fig. 5. PD Sliding Mode Control with sig function
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Fig. 6. Tracking response of PD sliding mode control 
based on Multi objective Genetic Algorithm (joint 1)

Fig. 7. Tracking response of PD sliding mode control 
based on Multi objective Genetic Algorithm (joint 2)

Fig. 8. Tracking error of PD sliding mode control 
based on Multi objective Genetic Algorithm (joint 1)

Fig. 9. Tracking error of PD sliding mode control 
based on Multi objective Genetic Algorithm (joint 2)

Fig. 10. Control input of PD sliding mode control 
based on Multi objective Genetic Algorithm (joint 1)

Fig. 11. Control input of PD sliding mode control 
based on Multi objective Genetic Algorithm (joint 2)

Fig. 12. Tracking response of PDα sliding mode 
control based on Multi objective Genetic (joint 1)

Fig. 13. Tracking response of PDα sliding mode 
control based on Multi objective Genetic (joint 2)
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Fig. 14. Tracking error of PDα sliding mode control 
based on Multi objective Genetic (joint 1)

Fig. 15. Tracking error of PDα sliding mode control 
based on Multi objective Genetic Algorithm (joint 2)

Moreover, the absolute total error of employing 
the PDα SMC is optimized in comparison with em-
ploying the PD SMC in Fig. 8, 9, 14 and 15.

 From Table 2 can be seen that the reaching 
times (1, 2) and the absolute total errors (E1, E) 
are much less than PD SMC by employing the 
PDα SMC. 

Finally simulations results guarantee the gen-
uineness of the suggested controller to boost the 
tracking performance of a nonlinear system and 
prove the robustness and efficiency of the PDα  

SMC against model parameter uncertainty. And 
also chattering phenomena has been considered 
in Fig. 4 with regard using (17) when the state hit 
the sliding surface. Then by employing satura-
tion function the chattering reduced significantly 
(Fig 10 and 11). 

CONCLUSION

Pareto optimal design of fractional SMC 
developed for nonlinear system. The fractional 
order SMC based multi-objective GA was used 
to enable the system output tracks the desired 
reference trajectory and stabilize the system with 
tracking error. Proposed optimized controller 
offered superior properties such as faster finite-
time convergence, higher control precision with 
very low control efforts and stability conditions 
guaranteed in control. By optimizing the 
controller, the satisfactory solution is selected 
in Pareto optimum solution set according to the 
system requirement. The results demonstrated 
that the optimized fractional SMC error was 
reduced significantly and tracking the desired 
value was conducted with higher accuracy. 
Finally, some numerical simulations are 
provided to confirm the validity of the proposed 
approach in various systems.
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